[1]朱紫衣,刘晨霞,江忠勇,等.肿瘤细胞线粒体靶向治疗机制及药物研究进展[J].陕西医学杂志,2021,50(9):1170-1173.[doi:DOI:10.3969/j.issn.1000-7377.2021.09.032]
 ZHU Ziyi,LIU Chenxia,JIANG Zhongyong,et al.Research progress of tumor cell mitochondrial targeted therapy mechanism and drugs[J].,2021,50(9):1170-1173.[doi:DOI:10.3969/j.issn.1000-7377.2021.09.032]
点击复制

肿瘤细胞线粒体靶向治疗机制及药物研究进展
分享到:

《陕西医学杂志》[ISSN:1000-7377/CN:61-1281/TN]

卷:
50
期数:
2021年9期
页码:
1170-1173
栏目:
综 述
出版日期:
2021-09-05

文章信息/Info

Title:
Research progress of tumor cell mitochondrial targeted therapy mechanism and drugs
作者:
朱紫衣1刘晨霞2江忠勇3常 凯3
(1.简阳市人民医院实验医学科,四川 简阳 641400; 2.西南医科大学临床医学院,四川 泸州 646000; 3.西部战区总医院检验科,四川 成都 610083)
Author(s):
ZHU ZiyiLIU ChenxiaJIANG ZhongyongCHANG Kai
(Department of Clinical Laboratory,Jianyang People's Hospital,Jianyang 641400,China)
关键词:
肿瘤 线粒体 转移 靶向治疗 活性氧 线粒体DNA
Keywords:
Tumor Mitochondria Metastasis Targeted therapy ROS MtDNA
分类号:
R 730.5
DOI:
DOI:10.3969/j.issn.1000-7377.2021.09.032
文献标志码:
A
摘要:
线粒体在能量代谢、细胞凋亡调节和细胞信号传导中不可或缺。肿瘤细胞线粒体在结构和功能上都发生改变,如代谢活动改变、活性氧(ROS)水平增加、线粒体DNA(mtDNA)发生突变等。基于线粒体在肿瘤代谢中的多重作用,靶向线粒体设计治疗药物对于增加药物特异性、减低对正常组织的不良反应是十分有意义的。现对肿瘤细胞线粒体靶向治疗机制及药物研究进展进行综述。
Abstract:
Mitochondria are indispensable in energy metabolism,apoptosis regulation and signal transduction.The structure and function of mitochondria in tumor cells have been changed,such as the changes of metabolic activity,the increase of ROS level,and the mutation of mtDNA.Based on the multiple roles of mitochondria in tumor metabolism,it is of great significance to design therapeutic drugs targeting mitochondria to increase the specificity of drugs and reduce the adverse reactions to normal tissues.In this paper,the research progress of the mechanism of tumor cells mitochondrial targeted therapy and drugs are reviewed.

参考文献/References:

[1] Porporato PE,Filigheddu N,Pedro JMB,et al.Mitochondrial metabolism and cancer[J].Cell Res,2018,28:265-280.
[2] Tan AS,Baty JW,Dong LF,et al.Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA[J].Cell Metab,2015,21:81-94.
[3] Yu M,Chen S,Hong W,et al.Prognostic role of glycolysis for cancer outcome:Evidence from 86 studies[J].J Cancer Res Clin Oncol,2019,145(4):967-999.
[4] Singh D,Arora R,Kaur P,et al.Overexpression of hypoxia-inducible factor and metabolic pathways:Possible targets of cancer[J].Cell Biosci,2017,7:62.
[5] Teoh ST,Lunt SY.Metabolism in cancer metastasis:Bioenergetics,biosynthesis,and beyond[J].Wiley Interdiscip Rev Syst Biol Med,2018,10(2):1406.
[6] Shiraishi T,Verdone JE,Huang J,et al.Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells[J].Oncotarget,2015,6(1):130-143.
[7] Vyas S,Zaganjor E,Haigis MC.Mitochondria and cancer[J].Cell,2016,166(3):555-566.
[8] Iommarini L,Ghelli A,Gasparre G,et al.Mitochondrial metabolism and energy sensing in tumor progression[J].Biochim Biophys Acta Bioenerg,2017,1858(8):582-590.
[9] Woo DK,Green PD,Santos JH,et al.Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+)mice[J].Am J Pathol,2012,180(1):24-31.
[10] Kumari S,Badana AK,Mohan GM,et al.Reactive oxygen species:A key constituent in cancer survival[J].Biomark Insights,2018,13:1177.
[11] Galadari S,Rahman A,Pallichankandy S,et al.Reactive oxygen species and cancer paradox:To promote or to suppress?[J].Free Radic Biol Med,2017,104:144-164.
[12] Jiang J,Wang K,Chen Y,et al.Redox regulation in tumor cell epithelial-mesenchymal transition:Molecular basis and therapeutic strategy[J].Signal Transduct Target Ther,2017,2:17036.
[13] Shimojo Y,Akimoto M,Hisanaga T,et al.Attenuation of reactive oxygen species by antioxidants suppresses hypoxia-induced epithelial-mesenchymal transition and metastasis of pancreatic cancer cells[J].Clin Exp Metastasis,2013,30(2):143-154.
[14] Mambo E,Chatterjee A,Xing M,et al.Tumor-specific changes in mtDNA content in human cancer[J].Int J Cancer,2005,116(6):920-924.
[15] Sun X,Zhan L,Chen Y,et al.Increased mtDNA copy number promotes cancer progression by enhancing mitochondrial oxidative phosphorylation in microsatellite-stable colorectal cancer[J].Signal Transduct Target Ther,2018,3(1):8.
[16] Ishikawa K,Takenaga K,Akimoto M,et al.ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis[J].Science,2008,320(5876):661-664.
[17] Naito A,Cook CC,Mizumachi T,et al.Progressive tumor features accompany epithelial-mesenchymal transition induced in mitochondrial DNA-depleted cells[J].Cancer Sci,2008,99(8):1584-1588.
[18] Luise MD,Girolimetti G,Okere B,et al.Molecular and metabolic features of oncocytomas:Seeking the blueprints of indolent cancers[J].Biochim Biophys Acta Bioenerg,2017,1858(8):591-601.
[19] Sabharwal SS,Schumacker PT.Mitochondrial ROS in cancer:Initiators,amplifiers or an Achilles' heel?[J].Nat Rev Cancer,2014,14:709-721.
[20] Guerra F,Perrone AM,Kurelac I,et al.Mitochondrial DNA mutation in serous ovarian cancer:Implications for mitochondria-coded genes in chemoresistance[J].J Clin Oncol,2012,30(36):e373-e378.
[21] Ericson NG,Kulawiec M,Vermulst M,et al.Decreased mitochondrial DNA mutagenesis in human colorectal cancer[J].PLoS Genet,2012,8(6):e1002689.
[22] Luo Y,Ma J,Lu W.The significance of mitochondrial dysfunction in cancer[J].Int J Mol Sci,2020,21(16):e5598.
[23] Zhao Y,Butler EB,Tan M.Targeting cellular metabolism to improve cancer therapeutics[J].Cell Death Dis,2013,4(3):e532.
[24] Liu Y,Cao Y,Zhang W,et al.A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis,induces cell-cycle arrest,and inhibits cancer cell growth in vitro and in vivo[J].Mol Cancer Ther,2012,11:1672-1682.
[25] Scafoglio CR,Villegas B,Abdelhady G,et al.Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma[J].Sci Transl Med,2018,10(467):5933.
[26] Simons AL,Ahmad IM,Mattson DM,et al.2-Deoxy-D-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells[J].Cancer Res,2007,67(7):3364-3370.
[27] Evans JM,Donnelly LA,Emslie-Smith AM,et al.Metformin and reduced risk of cancer in diabetic patients[J].BMJ,2005,330(7503):1304-1305.
[28] Dowling RJ,Niraula S,Stambolic V,et al.Metformin in cancer:Translational challenges[J].J Mol Endocrinol,2012,48(3):31-43.
[29] Bridges HR,Jones AJY,Pollak MN,et al.Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria[J].Biochem J,2014,462:475-487.
[30] Wheaton WW,Weinberg SE,Hamanaka RB,et al.Metformin inhibits mitochondrial complex Ⅰ of cancer cells to reduce tumorigenesis[J].Elife,2014,3:e02242.
[31] Liu X,Romero IL,Litchfield LM,et al.Metformin targets central carbon metabolism and reveals mitochondrial requirements in human cancers[J].Cell Metab,2016,24(5):728-739.
[32] Zhang DS,Li J,Wang FZ,et al.Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy[J].Cancer Lett,2014,355(2):176-183.
[33] Xue C,Wang C,Liu Q,et al.Targeting P-glycoprotein expression and cancer cell energy metabolism:combination of metformin and 2-deoxyglucose reverses the multidrug resistance of K562/Dox cells to doxorubicin[J].Tumour Biol,2016,37:8587-8597.
[34] Millea PJ.N-acetylcysteine:Multiple clinical applications[J].Am Fam Physician,2009,80:265-269.
[35] Qin Y,Zhao D,Zhou HG,et al.Apigenin inhibits NF kappaB and snail signaling,EMT and metastasis in human hepatocellular carcinoma[J].Oncotarget,2016,7:41421-41431.
[36] 王 敏,李习平,杨 梅,等.Caspase信号途径及其在乳腺癌治疗中的作用研究进展[J].陕西医学杂志,2021,50(3):377-380.
[37] Day S,Gonzalez R,Lawson D,et al.Phase Ⅱ,randomized,controlled,double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxel alone for stage Ⅳ metastatic melanoma[J].J Clin Oncol,2009,27:5452-5458.
[38] Xiao D,Powolny AA,Moura MB,et al.Phenethyl isothiocyanate inhibits oxidative phosphorylation to trigger reactive oxygen species-mediated death of human prostate cancer cells[J].J Biol Chem,2010,285:26558-26569.
[39] Chan DK,Miskimins WK.Metformin and phenethyl isothiocyanate combined treatment in vitro is cytotoxic to ovarian cancer cultures[J].J Ovarian Res,2012,5:19.
[40] Yuzefovych LV,Kahn AG,Schuler MA,et al.Mitochondrial DNA repair through OGG1 activity attenuates breast cancer progression and metastasis[J].Cancer Res,2016,76(1):30-34.
[41] Akbari M,Keijzers G,Maynard S,et al.Overexpression of DNA ligase Ⅲ in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair[J].DNA Repair,2014,16(1):44-53.
[42] 宋文沁,黄亚医,夏中元.线粒体自噬及其在肺脏疾病中的作用研究进展[J].陕西医学杂志,2018,47(10):1367-1369.
[43] Kim S,Nam HY,Lee J,et al.Mitochondrion-targeting peptides and peptidomimetics:Recent progress and design principles[J].Biochemistry,2020,59(3):270-284.

相似文献/References:

[1]李连香,于翠革,陈丽宏,等.miR-99b在新辅助化疗宫颈癌组织中的表达[J].陕西医学杂志,2016,(10):1292.
 Li Lianxiang,Yu Cuige,Chen Lihong,et al.[J].,2016,(9):1292.
[2]安改丽,侯磊,李旭,等.miR-145对人乳腺癌MCF-7/ADR细胞耐药逆转的作用机制研究[J].陕西医学杂志,2017,(06):695.
[3]梁 天,朱晓明.趋化因子CCL28研究进展及其与肿瘤的关系*[J].陕西医学杂志,2019,(6):813.
[4]崔 佳,刘敏丽.乙酰左旋肉碱对脊髓损伤后线粒体的保护作用研究进展[J].陕西医学杂志,2021,50(3):374.[doi:DOI:10.3969/j.issn.1000-7377.2021.03.031]
 CUI Jia,LIU Minli.Protective effect of acetyl L-carnitine on mitochondria after spinal cord injury[J].,2021,50(9):374.[doi:DOI:10.3969/j.issn.1000-7377.2021.03.031]
[5]张 星,高 明,赵 武,等.微小RNA-21对急性肾损伤模型大鼠线粒体氧化磷酸化的影响及机制研究[J].陕西医学杂志,2022,51(3):274.[doi:DOI:10.3969/j.issn.1000-7377.2022.03.003]
 ZHANG Xing,GAO Ming,ZHAO Wu,et al.Effect of microRNA-21 on oxidative phosphorylation of mitochondria in rats with acute renal injury and its mechanism[J].,2022,51(9):274.[doi:DOI:10.3969/j.issn.1000-7377.2022.03.003]
[6]周 乐,徐佩尔,郑玉婷,等.紫杉醇促进心肌细胞微管结构稳定上调HO-1表达预防再灌注损伤的机制研究[J].陕西医学杂志,2022,51(11):1328.[doi:DOI:10.3969/j.issn.1000-7377.2022.11.002]
 ZHOU Le,XU Peier,ZHENG Yuting,et al.Mechanism of paclitaxel promoting microtubule structural stability in cardiac myocytes upregulating HO-1 expression to prevent reperfusion injury[J].,2022,51(9):1328.[doi:DOI:10.3969/j.issn.1000-7377.2022.11.002]
[7]郭 勇,崔 森.红细胞凋亡在高原红细胞增多症中的作用研究进展[J].陕西医学杂志,2023,52(4):492.[doi:DOI:10.3969/j.issn.1000-7377.2023.04.029]
[8]戴松松,刘 昉.甲状腺素信号通路调控自噬机制研究进展[J].陕西医学杂志,2023,52(6):764.[doi:DOI:10.3969/j.issn.1000-7377.2023.06.028]
 DAI Songsong,LIU Fang.Research progress on mechanism of thyroxine signaling pathway regulating autophagy[J].,2023,52(9):764.[doi:DOI:10.3969/j.issn.1000-7377.2023.06.028]
[9]蔺 洁,雷 烨,李晓苗,等.小泛素化修饰调控糖尿病心肌病发生与发展[J].陕西医学杂志,2023,52(7):929.[doi:DOI:10.3969/j.issn.1000-7377.2023.07.035]
 LIN Jie,LEI Ye,LI Xiaomiao,et al.SUMO modification regulates occurrence and development of diabetic cardiomyopathy[J].,2023,52(9):929.[doi:DOI:10.3969/j.issn.1000-7377.2023.07.035]
[10]张文娟,王琰琰,周静祎,等.微小RNA-181c-5p和Kruppel样因子6在子宫内膜样腺癌组织中的表达及其与患者临床病理特征关系研究[J].陕西医学杂志,2024,(4):552.[doi:DOI:10.3969/j.issn.1000-7377.2024.04.026]
 ZHANG Wenjuan,WANG Yanyan,ZHOU Jingyi,et al.Expression of miR-181c-5p and Kruppel-like transcription factor 6 and its relationship with clinicopathological features in endometrioid carcinoma tissues[J].,2024,(9):552.[doi:DOI:10.3969/j.issn.1000-7377.2024.04.026]

备注/Memo

备注/Memo:
基金项目:四川省中医药管理局科学技术研究专项课题(2020JC0124)
更新日期/Last Update: 2021-09-06