[1]昌 震,李大同,杨小彬,等.奇壬醇对骨质疏松症的治疗作用及机制研究进展[J].陕西医学杂志,2022,51(9):1167-1170.[doi:DOI:10.3969/j.issn.1000-7377.2022.09.029]
 CHANG Zhen,LI Datong,YANG Xiaobin,et al.Research progress on therapeutic effect and mechanism of Kirenol on osteoporosis[J].,2022,51(9):1167-1170.[doi:DOI:10.3969/j.issn.1000-7377.2022.09.029]
点击复制

奇壬醇对骨质疏松症的治疗作用及机制研究进展
分享到:

《陕西医学杂志》[ISSN:1000-7377/CN:61-1281/TN]

卷:
51
期数:
2022年9期
页码:
1167-1170
栏目:
综 述
出版日期:
2022-09-05

文章信息/Info

Title:
Research progress on therapeutic effect and mechanism of Kirenol on osteoporosis
作者:
昌 震1李大同1杨小彬1孔令擘1孙 杨2
(1.西安交通大学附属红会医院脊柱外科,陕西 西安 710054; 2.汉中职业技术学院附属医院骨显微外科,陕西 汉中 723000)
Author(s):
CHANG ZhenLI DatongYANG XiaobinKONG LingboSUN Yang
(Department of Spine Surgery,Honghui Hospital Affiliated to Xi'an Jiaotong University,Xi'an 710054,China)
关键词:
骨质疏松症 奇壬醇 破骨细胞 天然药物 信号通路
Keywords:
Osteoporosis Kirenol Osteoclast Natural medicine Signal pathway
分类号:
R 580
DOI:
DOI:10.3969/j.issn.1000-7377.2022.09.029
文献标志码:
A
摘要:
骨质疏松症是一种多因素导致的骨质流失疾病,大大增加了骨折的风险。目前骨质疏松症主要依靠药物治疗,但长期药物治疗中都存在安全性和耐受性问题。高效低毒天然药物的研发逐渐受到青睐,为骨质疏松症的治疗带来了新的转变。奇壬醇(Kir)作为具有生物活性的二萜类化合物,能够通过抑制多种信号通路来抑制破骨细胞的活性,为骨质疏松症的治疗提供了新的前瞻性思路。现就Kir对骨质疏松症的治疗作用及机制进展进行综述。
Abstract:
Osteoporosis is a multifactorial bone loss disease that greatly increases the risk of fracture.At present,osteoporosis mainly depends on drug therapy,but there are safety and tolerability problems in long-term drug therapy.The research and development of high-efficiency and low-toxicity natural drugs are gradually gaining popularity,bringing new changes to the treatment of osteoporosis.Kirenol(Kir),as a biologically active diterpenoid,can inhibit the activity of osteoclasts by inhibiting various signal pathways,thus providing a new prospective idea for the treatment of osteoporosis.This article reviews the therapeutic effect and mechanism of Kir on osteoporosis.

参考文献/References:

[1] Meeta M,Harinarayan CV,Marwah R,et al.Clinical practice guidelines on postmenopausal osteoporosis: An executive summary and recommendations[J].J Midlife Health,2013,4(2):107-126.
[2] Pisani P,Renna MD,Conversano F,et al.Major osteoporotic fragility fractures: Risk factor updates and societal impact[J].World J Orthop,2016,7(3):171-181.
[3] 杨 进,荔 琦,常春峰.脊柱骨质疏松骨折患者椎体成形术后再骨折发生率及危险因素研究[J].陕西医学杂志,2020,49(12):1573-1576.
[4] 成 洁,王 颖,吉健华,等.骨疏康胶囊治疗肾阳虚型骨质疏松症疗效及对患者骨代谢影响[J].陕西中医,2019,40(9):1232-1234,1250.
[5] Khosla S,Burr D,Cauley J,et al.Bisphosphonate-associated osteonecrosis of the jaw: Report of a task force of the American society for bone and mineral research[J].J Bone Miner Res,2007,22(10):1479-1491.
[6] Kennel KA,Drake MT.Adverse effects of bisphosphonates: Implications for osteoporosis management[J].Mayo Clin Proc,2009,84(7):632-638.
[7] Simonet WS,Lacey DL,Dunstan CR,et al.Osteoprotegerin: A novel secreted protein involved in the regulation of bone density[J].Cell,1997,89(2):309-319.
[8] Ikeda T,Utsuyama M,Hirokawa K.Expression profiles of receptor activator of nuclear factor κB ligand,receptor activator of nuclear factor κB,and osteoprotegerin messenger RNA in aged and ovariectomized rat bones[J].J Bone Miner Res,2001,16(8):1416-1425.
[9] Franceschi RT,Ge C,Xiao G,et al.Transcriptional regulation of osteoblasts[J].Ann N Y Acad Sci,2007,1116(1):196-207.
[10] Baron R,Kneissel M.WNT signaling in bone homeostasis and disease: From human mutations to treatments[J].Nat Med,2013,19(2):179-192.
[11] Hinoi E,Fujimori S,Wang L,et al.Nrf2 negatively regulates osteoblast differentiation via interfering with Runx2-dependent transcriptional activation[J].J Biol Chem,2006,281(26):18015-18024.
[12] Liu Y,Wang C,Wang G,et al.Loureirin B suppresses RANKL-induced osteoclastogenesis and ovariectomized osteoporosis via attenuating NFATc1 and ROS activities[J].Theranostics,2019,9(16):4648-4662.
[13] Kim MB,Song Y,Hwang JK.Kirenol stimulates osteoblast differentiation through activation of the BMP and Wnt/β-catenin signaling pathways in MC3T3-E1 cells[J].Fitoterapia,2014,98:59-65.
[14] Karaman I,Gunay AE,Yerer MB,et al.Effect of kirenol on the interaction between the WNT/beta-Catenin and RUNX2/TCF/LEF1 pathways in fracture healing in vivo[J].Acta Orthop Traumatol Turc,2020,54(3):320-329.
[15] Boyle WJ,Simonet WS,Lacey DL.Osteoclast differentiation and activation[J].Nature,2003,423(6937):337-342.
[16] Gohda J,Akiyama T,Koga T,et al.RANK-mediated amplification of TRAF6 signaling leads to NFATc1 induction during osteoclastogenesis[J].EMBO J,2005,24(4):790-799.
[17] Zou B,Zheng J,Deng W,et al.Kirenol inhibits RANKL-induced osteoclastogenesis and prevents ovariectomized-induced osteoporosis via suppressing the Ca2+-NFATc1 and Cav-1 signaling pathways[J].Phytomedicine,2021,80:153377-153388.
[18] Miyamoto T.Regulators of osteoclast differentiation and cell-cell fusion[J].The Keio Journal of Medicine,2011,60(4):101-105.
[19] Takito J,Otsuka H,Yanagisawa N,et al.Regulation of osteoclast multinucleation by the actin cytoskeleton signaling network[J].J Cell Physiol,2015,230(2):395-405.
[20] Kim JH,Kim N.Regulation of NFATc1 in osteoclast differentiation[J].J Bone Metab,2014,21(4):233-241.
[21] Davis RJ.Signal transduction by the JNK group of MAP kinases[J].Cell,2000,103(2):239-252.
[22] Takayanagi H,Kim S,Koga T,et al.Induction and activation of the transcription factor NFATc1(NFAT2)integrate RANKL signaling in terminal differentiation of osteoclasts[J].Developmental cell,2002,3(6):889-901.
[23] Koga T,Inui M,Inoue K,et al.Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis[J].Nature,2004,428(6984):758-763.
[24] Lee YD,Yoon SH,Ji E,et al.Caveolin-1 regulates osteoclast differentiation by suppressing cfms degradation[J].Exp & Mol Med,2015,47(10):e192-e200.
[25] Pani B,Singh BB.Lipid rafts/caveolae as microdomains of calcium signaling[J].Cell calcium,2009,45(6):625-633.
[26] Kitaura H,Kimura K,Ishida M,et al.Immunological reaction in TNF-α-mediated osteoclast formation and bone resorption in vitro and in vivo[J].Clinical and Developmental Immunology,2013,2013:181849.
[27] Ikebuchi Y,Aoki S,Honma M,et al.Coupling of bone resorption and formation by RANKL reverse signalling[J].Nature,2018,561(7722):195-200.
[28] Molnár I,Bohaty I,Somogyiné-Vári E.IL-17A-mediated sRANK ligand elevation involved in postmenopausal osteoporosis[J].Osteoporosis Int,2014,25(2):783-786.
[29] Li JY,Yu M,Tyagi AM,et al.IL-17 receptor signaling in osteoblasts/osteocytes mediates PTH-induced bone loss and enhances osteocytic RANKL production[J].J Bone Miner Res,2019,34(2):349-360.
[30] Xiao J,Yang R,Yang L,et al.Kirenol attenuates experimental autoimmune encephalomyelitis by inhibiting differentiation of Th1 and th17 cells and inducing apoptosis of effector T cells[J].Sci Rep,2015,5:9022.
[31] Jacob L,Boisserand LSB,Geraldo LHM,et al.Anatomy and function of the vertebral column lymphatic network in mice[J].Nature Communications,2019,10(1):4594.
[32] Prieto-Sánchez RM,Berenjeno IM,Bustelo XR.Involvement of the Rho/Rac family member RhoG in caveolar endocytosis[J].Oncogene,2006,25(21):2961-2973.

相似文献/References:

[1]李 洺,赵 宇△,马 丁,等.女性绝经后骨质疏松症患者血清铁蛋白、同源拮抗物表达水平及临床意义*[J].陕西医学杂志,2020,49(10):1266.[doi:DOI:10.3969/j.issn.1000-7377.2020.10.017]
 LI Ming,ZHAO Yu,MA Ding,et al.Expression and clinical significance of serum ferritin and B-cell lymphoma factor 2 homologous antagonist in postmenopausal women with osteoporosis[J].,2020,49(9):1266.[doi:DOI:10.3969/j.issn.1000-7377.2020.10.017]
[2]张亮亮,赵程锦,周煜虎,等.积雪草酸对大鼠绝经后骨质疏松症的治疗作用及机制研究[J].陕西医学杂志,2023,52(12):1624.[doi:DOI:10.3969/j.issn.1000-7377.2023.12.002]
 ZHANG Liangliang,ZHAO Chengjin,ZHOU Yuhu,et al.Therapeutic effect and mechanism of asiatic acid on postmenopausal osteoporosis in rats[J].,2023,52(9):1624.[doi:DOI:10.3969/j.issn.1000-7377.2023.12.002]
[3]彭 赛,卢丛兰,孙中洋.人工智能在骨质疏松症诊疗中的应用进展[J].陕西医学杂志,2024,(3):425.[doi:DOI:10.3969/j.issn.1000-7377.2024.03.030]
 PENG Sai,LU Conglan,SUN Zhongyang.Advances in application of artificial intelligence in diagnosis and treatment of osteoporosis[J].,2024,(9):425.[doi:DOI:10.3969/j.issn.1000-7377.2024.03.030]

备注/Memo

备注/Memo:
基金项目:陕西省自然科学基础研究计划项目(2021JM-575)
更新日期/Last Update: 2022-09-05