[1]娄焕英,季莹莹,张 帅,等.羊水干细胞分化机制研究进展[J].陕西医学杂志,2025,54(2):277-281.[doi:DOI:10.3969/j.issn.1000-7377.2025.02.028]
 LOU Huanying,JI Yingying,ZHANG Shuai,et al.Research progress on the differentiation mechanism of amniotic fluid stem cells[J].,2025,54(2):277-281.[doi:DOI:10.3969/j.issn.1000-7377.2025.02.028]
点击复制

羊水干细胞分化机制研究进展
分享到:

《陕西医学杂志》[ISSN:1000-7377/CN:61-1281/TN]

卷:
54
期数:
2025年2期
页码:
277-281
栏目:
综 述
出版日期:
2025-02-05

文章信息/Info

Title:
Research progress on the differentiation mechanism of amniotic fluid stem cells
作者:
娄焕英季莹莹张 帅查斌斌孙 晶王 凤李 毅
(青岛大学附属泰安市中心医院产前诊断实验室,山东 泰安 271000)
Author(s):
LOU HuanyingJI YingyingZHANG ShuaiCHA BinbinSUN JingWANG FengLI Yi
(Laboratory of Prenatal Diagnosis,the Affiliated Tai'an Central Hospital of Qingdao University,Tai'an 271000, China)
关键词:
羊水干细胞 分化机制 信号通路 表观遗传修饰 微环境
Keywords:
Amniotic fluid stem cells Differentiation mechanism Signaling pathways Epigenetic modifications Microenvironment
分类号:
R 392.2
DOI:
DOI:10.3969/j.issn.1000-7377.2025.02.028
文献标志码:
A
摘要:
羊水干细胞(AFSCs)作为一类新型多能干细胞,因其易于获取、低免疫原性及多向分化潜能等特性,近年来在再生医学、组织工程、疾病模型构建及药物筛选等多个领域展现出巨大潜力。羊水干细胞的分化受到多种因素的调控,但其分化机制的研究进展有待阐明和总结。现对AFSCs分化过程中的信号通路、表观遗传修饰等关键调控因素、微环境影响以及AFSCs在医学领域中的应用进行了综述。
Abstract:
Amniotic fluid stem cells(AFSCs),as a new type of pluripotent stem cells,have shown great potential in various fields such as regenerative medicine,tissue engineering,disease modeling,and drug screening in recent years due to their unique characteristics,including ease of access,low immunogenicity and multi-directional differentiation potential.The differentiation of AFSCs is regulated by multiple factors,but the research progress on their differentiation mechanisms remains to be clarified and summarized.This article reviews the key regulatory factors such as signaling pathways,epigenetic modifications and micro-environmental influences during the differentiation process and the applications of AFSCs in the medical field.

参考文献/References:

[1] SRIVASTAVA M,AHLAWAT N,SRIVASTAVA A.Amniotic fluid stem cells:A new era in regenerative medicine[J].J Obstet Gynaecol India,2018,68(1):15-19.
[2] SHAMSNAJAFABADI H,SOHEILI Z S.Amniotic fluid characteristics and its application in stem cell therapy:A review[J].Int J Reprod Biomed,2022,20(8):627-643.
[3] ROSNER M,HENGSTSCHLÄGER M.Amniotic fluid stem cells:What they are and what they can become[J].Curr Stem Cell Res Ther,2023,18(1):7-16.
[4] RAMASAMY T S,VELAITHAN V,YEOW Y,et al.Stem cells derived from amniotic fluid:A potential pluripotent-like cell source for cellular therapy?[J].Curr Stem Cell Res Ther,2018,13(4):252-264.
[5] KANGARI P,TALAEI-KHOZANI T,RAZEGHIAN-JAHROMI I,et al.Mesenchymal stem cells:Amazing remedies for bone and cartilage defects[J].Stem Cell Res Ther,2020,11(1):492.
[6] MARALDI T,RUSSO V.Amniotic fluid and placental membranes as sources of stem cells:Progress and challenges 2.0[J].Int J Mol Sci,2023,24(22):16020.
[7] JABEEN H,WAHID M,UDDIN J A A,et al.Differentiation of CD117+ amniotic fluid stem cells towards nephron progenitors[J].Pak J Med Sci,2022,38(6):1656-1661.
[8] GAGGI G,DI-CREDICO A,GUARNIERI S,et al.Human mesenchymal amniotic fluid stem cells reveal an unexpected neuronal potential differentiating into functional spinal motor neurons[J].Front Cell Dev Biol,2022,10:936990.
[9] HARRELL C R,GAZDIC M,FELLABAUM C,et al.Therapeutic potential of amniotic fluid derived mesenchymal stem cells based on their differentiation capacity and immunomodulatory properties[J].Curr Stem Cell Res Ther,2019,14(4):327-336.
[10] GÖHRING A R,REUTER S,CLEMENT J H,et al.Human microRNA-299-3p decreases invasive behavior of cancer cells by downregulation of Oct4 expression and causes apoptosis[J].PLoS One,2017,12(4):e0174912.
[11] HAMID H A,RAMASAMY R,MUSTAFA M K,et al.Magnetic exposure using Samarium Cobalt(SmCO5)increased proliferation and stemness of human umbilical cord mesenchymal stem cells(hUC-MSCs)[J].Sci Rep,2022,12(1):8904.
[12] ZHANG Y,YAN J,LIU Y,et al.Human amniotic fluid stem cell-derived exosomes as a novel cell-free therapy for cutaneous regeneration[J].Front Cell Dev Biol,2021,9:685873.
[13] ROMANI R,MANNI G,DONATI C,et al.S1P promotes migration,differentiation and immune regulatory activity in amniotic-fluid-derived stem cells[J].Eur J Pharmacol,2018,833:173-182.
[14] 邓祥丽,陈丽娟,邵梅,等.益肺汤调控TGF-β1/Smad2通路抗肺纤维化机制研究[J].陕西中医,2024,45(4):435-439.
[15] LI Y,JIN D,XIE W,et al.PPAR-γ and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively[J].Curr Stem Cell Res Ther,2018,13(3):185-192.
[16] D'ALIMONTE I,LANNUTTI A,PIPINO C,et al.Wnt signaling behaves as a “master regulator” in the osteogenic and adipogenic commitment of human amniotic fluid mesenchymal stem cells[J].Stem Cell Rev Rep,2013,9(5):642-654.
[17] ZENTELYTE A,GASINIENE M,TREIGYTE G,et al.Epigenetic regulation of amniotic fluid mesenchymal stem cell differentiation to the mesodermal lineages at normal and fetus-diseased gestation[J].J Cell Biochem,2020,121(2):1811-1822.
[18] BYERS C,SPRUCE C,FORTIN H J,et al.Genetic control of the pluripotency epigenome determines differentiation bias in mouse embryonic stem cells[J].EMBO J,2022,41(2):e109445.
[19] HE F,WU H,ZHOU L,et al.Tet2-mediated epigenetic drive for astrocyte differentiation from embryonic neural stem cells[J].Cell Death Discov,2020,6:30.
[20] DI-TIZIO D,DI-SERAFINO A,UPADHYAYA P,et al.The impact of epigenetic signatures on amniotic fluid stem cell fate[J].Stem Cells Int,2018,2018:4274518.
[21] NAKAGAWA M,NARIKIYO O.Epigenetic landscape of interacting cells:A model simulation for developmental process[J].Biosystems,2010,101(3):156-161.
[22] SIMPSON D J,OLOVA N N,CHANDRA T.Cellular reprogramming and epigenetic rejuvenation[J].Clin Epigenetics,2021,13(1):170.
[23] GASINIENE M,ZUBOVA A,UTKUS A,et al.Epigenetic and metabolic alterations in human amniotic fluid stem cells induced to cardiomyogenic differentiation by DNA methyltransferases and p53 inhibitors[J].J Cell Biochem,2019,120(5):8129-8143.
[24] GAGGI G,DI-CREDICO A,IZZICUPO P,et al.Epigenetic features of human perinatal stem cells redefine their stemness potential[J].Cells,2020,9(5):1304.
[25] 韩永康,杜毓锋,钱力,等.N6-甲基腺苷修饰在呼吸系统疾病中的研究进展[J].陕西医学杂志,2024,53(1):136-139,144.
[26] ZACCARA S,RIES R J,JAFFREY S R.Reading,writing and erasing mRNA methylation[J].Nat Rev Mol Cell Biol,2019,20(10):608-624.
[27] ROUNDTREE I A,EVANS M E,PAN T,et al.Dynamic RNA modifications in gene expression regulation[J].Cell,2017,169(7):1187-1200.
[28] 张旭,秦文,刘佳,等.m6A RNA甲基化修饰参与干细胞多向分化调控的研究进展[J].中华口腔医学研究杂志:电子版,2020,14(4):201-206.
[29] GEULA S,MOSHITCH-MOSHKOVITZ S,DOMINISSINI D,et al.Stem cells.m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation[J].Science,2015,347(6225):1002-1006.
[30] ZHANG M,ZHAI Y,ZHANG S,et al.Corrigendum:Roles of N6-methyladenosine(m6A)in stem cell fate decisions and early embryonic development in mammals[J].Front Cell Dev Biol,2021,9:640806.
[31] JANG S,HWANG J,JEONG H S.The role of histone acetylation in mesenchymal stem cell differentiation[J].Chonnam Med J,2022,58(1):6-12.
[32] XU X,WANG W,ZOU J,et al.Histone modification of osteogenesis related genes triggered by substrate topography promotes human mesenchymal stem cell differentiation[J].ACS Appl Mater Interfaces,2023,15(25):29752-29766.
[33] MINAKAWA T,YAMASHITA J K.Extracellular vesicles and microRNAs in the regulation of cardiomyocyte differentiation and proliferation[J].Arch Biochem Biophys,2023,749:109791.
[34] WANG Y C,YAO X,MA M,et al.MiR-130b inhibits proliferation and promotes differentiation in myocytes via targeting Sp1[J].J Mol Cell Biol,2021,13(6):422-432.
[35] KALHORI M R,SOLEIMANI M,ALIBAKHSHI R,et al.The potential of miR-21 in stem cell differentiation and its application in tissue engineering and regenerative medicine[J].Stem Cell Rev Rep,2023,19(5):1232-1251.
[36] LAZZARINI R,SORGENTONI G,CAFFARINI M,et al.New miRNAs network in human mesenchymal stem cells derived from skin and amniotic fluid[J].Int J Immunopathol Pharmacol,2016,29(3):523-528.
[37] IORDACHE F,PETCU A I,PISOSCHI A M,et al.PCR array profiling of miRNA expression involved in the differentiation of amniotic fluid stem cells toward endothelial and smooth muscle progenitor cells[J].Int J Mol Sci,2023,25(1):302.
[38] LAZZARINI R,OLIVIERI F,FERRETTI C,et al.mRNAs and miRNAs profiling of mesenchymal stem cells derived from amniotic fluid and skin:The double face of the coin[J].Cell Tissue Res,2014,355(1):121-130.
[39] GHOLIZADEH-GHALEH AZIZ S,PASHAEI-ASL F,FARDYAZAR Z,et al.Isolation,characterization,cryopreservation of human amniotic stem cells and differentiation to osteogenic and adipogenic cells[J].PLoS One,2016,11(7):e0158281.
[40] GASINIENEM,ZENTELYTE A,WOJTAS B,et al.DNA methyltransferases inhibitors effectively induce gene expression changes suggestive of cardiomyogenic differentiation of human amniotic fluid-derived mesenchymal stem cells via chromatin remodeling[J].J Tissue Eng Regen Med,2019,13(3):469-481.
[41] WEI X,MA W,GU H,et al.Intra-amniotic mesenchymal stem cell therapy improves the amniotic fluid microenvironment in rat spina bifida aperta fetuses[J].Cell Prolif,2023,56(2):e13354.
[42] 张俊飞,张舒,石菲,等.模拟微重力处理间充质干细胞应用于干细胞治疗的研究进展[J].空军军医大学学报,2024,45(2):221-225.
[43] COSTA A,BALBI C,GARBATI P,et al.Investigating the paracrine role of perinatal derivatives:Human amniotic fluid stem cell-extracellular vesicles show promising transient potential for cardiomyocyte renewal[J].Front Bioeng Biotechnol,2022,10:902038.
[44] SIBOV T T,PAVON L F,CABRAL F R,et al.Intravenous grafts of human amniotic fluid-derived stem cells reduce behavioral deficits in experimental ischemic stroke[J].Cell Transplant,2019,28(9-10):1306-1320.
[45] SALEHI-POURMEHR H,HAJEBRAHIMI S,RAHBARGHAZI R,et al.Stem cell therapy for neurogenic bladder dysfunction in rodent models:A systematic review[J].Int Neurourol J,2020,24(3):241-257.
[46] PISHNAMAZI S M,GHADERIAN S M H,IRANI S,et al.Polycaprolactone/poly L-lactic acid nanofibrous scaffold improves osteogenic differentiation of the amniotic fluid-derived stem cells[J].In Vitro Cell Dev Biol Anim,2024,60(1):106-114.
[47] JAFARI A,REZAEI-TAVIRANI M,FARHADIHOSSEINABADI B,et al.Human amniotic mesenchymal stem cells to promote/suppress cancer:Two sides of the same coin[J].Stem Cell Res Ther,2021,12(1):126.
[48] PHAN T G,LIM R,CHAN S T,et al.Phase Ⅰ trial outcome of amnion cell therapy in patients with ischemic stroke(I-ACT)[J].Front Neurosci,2023,17:1153231.
[49] YA J,PELLUMBAJ J,HASHMAT A,et al.The role of stem cells as therapeutics for ischaemic stroke[J].Cells,2024,13(2):112.
[50] SINGH J,SINGH S.Review on kidney diseases:Types,treatment and potential of stem cell therapy[J].Ren Replace Ther,2023,9(1):21.[51] HABIBA U E,KHAN N,GREENE D L,et al.The therapeutic effect of mesenchymal stem cells in diabetic kidney disease[J].J Mol Med(Berl),2024,102(4):537-570.[52] LIU H,WANG J,YUE G,et al.Placenta-derived mesenchymal stem cells protect against diabetic kidney disease by upregulating autophagy-mediated SIRT1/FOXO1 pathway[J].Ren Fail,2024,46(1):2303396.[53] FANG Y H,WANG S P H,CHANG H Y,et al.Progress and challenges of amniotic fluid derived stem cells in therapy of ischemic heart disease[J].Int J Mol Sci,2020,22(1):102.[54] HU J,CHEN X,LI P,et al.Exosomes derived from human amniotic fluid mesenchymal stem cells alleviate cardiac fibrosis via enhancing angiogenesis in vivo and in vitro[J].Cardiovasc Diagn Ther,2021,11(2):348-361.

备注/Memo

备注/Memo:
[基金项目]国家自然科学基金资助项目(31200983); 山东省医药卫生科技发展计划项目(2017WS598); 山东省泰安市科技创新发展项目(2021NS337); 泰安市中心医院苗圃培育项目(2021MPM04)
更新日期/Last Update: 2025-02-04