[1]雷云昊,雷永刚.微流控技术在过继细胞免疫治疗中的应用研究进展[J].陕西医学杂志,2024,(5):718-封3.[doi:DOI:10.3969/j.issn.1000-7377.2024.05.033]
 LEI Yunhao,LEI Yonggang.Research progress in application of microfluidic technology in adoptive cell immunotherapy[J].,2024,(5):718-封3.[doi:DOI:10.3969/j.issn.1000-7377.2024.05.033]
点击复制

微流控技术在过继细胞免疫治疗中的应用研究进展
分享到:

《陕西医学杂志》[ISSN:1000-7377/CN:61-1281/TN]

卷:
期数:
2024年5期
页码:
718-封3
栏目:
综 述
出版日期:
2024-05-05

文章信息/Info

Title:
Research progress in application of microfluidic technology in adoptive cell immunotherapy
作者:
雷云昊1雷永刚2
(1.大连医科大学医学影像学院,辽宁 大连 116000; 2.渭南市中心医院泌尿外科,陕西 渭南 714000)
Author(s):
LEI YunhaoLEI Yonggang
(College of Medical Imaging,Dalian Medical University,Dalian 116000,China)
关键词:
过继细胞疗法 微流控技术 免疫治疗 细胞分选 细胞增殖 临床前检测 药物评估
Keywords:
Adoptive cell therapy Microfluidic technology Immunotherapy Cell sorting Cell proliferation Preclinical assays Drug evaluation
分类号:
R 392.9
DOI:
DOI:10.3969/j.issn.1000-7377.2024.05.033
文献标志码:
A
摘要:
过继细胞疗法(ACT)是一种个体化疗法,通过采集患者自身或供体的T细胞,在体外进行基因增强后重新引入患者体内,以对抗特定的癌细胞或感染因子。然而,ACT存在许多的局限性,如多步骤耗时且成本高昂等。微流控技术(MT)是以微观通道流动为基础,借助微加工技术制造的微流体芯片和微阀门系统进行分析和操作的技术。微流控平台具有集成度高、效率高、高通量、样品需求低等优点,能够有效简化ACT制备步骤,降低生产成本,探索药物开发过程中的多种因素,以及模拟肿瘤微环境。现对MT在ACT疗法中的细胞分选、细胞增殖和临床前测定及药物评估方面以及在其他肿瘤免疫治疗中的应用进行综述。
Abstract:
Adoptive cell therapy(ACT)is a individualized therapy that uses T cells from a patient's own body or a donor to be genetically enhanced in vitro and then reintroduced into the patient to fight specific cancer cells or infectious agents.However,ACT has many limitations,such as multi-step time-consuming and costly.Microfluidic technology(MT)is a technology that analyzes and operates microfluidic chips and microvalve systems manufactured with the help of microfabrication technology based on microchannel flow.The microfluidic platform has the advantages of high integration,high efficiency,high throughput,and low sample requirements,which can effectively simplify ACT preparation steps,reduce production costs,explore multiple factors in the drug development process,and simulate the tumor microenvironment.This article reviews the application of MT in cell sorting,cell proliferation and preclinical assay and drug evaluation in ACT therapy,as well as its application in other tumor immunotherapies.

参考文献/References:

[1] KUMAR A R K,SHOU Y,CHAN B,et al.Materials for improving immune cell transfection[J].Adv Mater,2021,33(21):e2007421.
[2] TIAN Y,HU R,DU G,et al.Microfluidic chips:Emerging technologies for adoptive cell immunotherapy[J].Micromachines(Basel),2023,14(4):877.
[3] BRUDNO J N,KOCHENDERFER J N.Chimeric antigen receptor T-cell therapies for lymphoma[J].Nat Rev Clin Oncol,2018,15(1):31-46.
[4] LU X,TAYEBI M,AI Y.A low-cost and high-throughput benchtop cell sorter for isolating white blood cells from whole blood[J].Electrophoresis,2021,42(21-22):2281-2292.
[5] NOOR A M,MASUDA T,LEI W,et al.A microfluidic chip for capturing,imaging and counting CD3+ T-lymphocytes and CD19+ B-lymphocytes from whole blood[J].Sensors and Actuators B:Chemical,2018,276:107-113.
[6] FENNELL R D,SHER M,ASGHAR W.Development of a microfluidic device for CD4+ T cell isolation and automated enumeration from whole blood[J].Biosensors(Basel),2021,12(1):12.
[7] STRACHAN B C,XIA H,VOROS E,et al.Improved expansion of T cells in culture when isolated with an equipment-free,high-throughput,flow-through microfluidic module versus traditional density gradient centrifugation[J].Cytotherapy,2019,21(2):234-245.
[8] WANG Z,AHMED S,LABIB M,et al.Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting[J].Nat Biomed Eng,2022,6(2):108-117.
[9] SEGALINY A I,LI G,KONG L,et al.Functional TCR T cell screening using single-cell droplet microfluidics[J].Lab Chip,2018,18(24):3733-3749.
[10] XU C,WANG K,HUANG P,et al.Single-cell isolation microfluidic chip based on thermal bubble micropump technology[J].Sensors(Basel),2023,23(7):3623.
[11] STREETS A M,ZHANG X,CAO C,et al.Microfluidic single-cell whole-transcriptome sequencing[J].Proc Natl Acad Sci U S A,2014,111(19):7048-7053.
[12] ARANDA-HERNANDEZ J,HEUER C,BAHNEMANN J,et al.Microfluidic devices as process development tools for cellular therapy manufacturing[J].Adv Biochem Eng Biotechnol,2022,179:101-127.
[13] HASHEMZADEH H,ALLAHVERDI A,SEDGHI M,et al.PDMS nano-modified scaffolds for improvement of stem cells proliferation and differentiation in microfluidic platform[J].Nanomaterials(Basel),2020,10(4):668.
[14] SHAH P,VEDARETHINAM I,KWASNY D,et al.Microfluidic bioreactors for culture of non-adherent cells[J].Sensors and Actuators B:Chemical,2011,156(2):1002-1008.
[15] SHELTON S E,NGUYEN H T,BARBIE D A,et al.Engineering approaches for studying immune-tumor cell interactions and immunotherapy[J].iScience,2020,24(1):101985.
[16] 王军徽,肖萌,马功贤,等.非小细胞肺癌中医药治疗研究进展[J].陕西中医,2023,44(11):1663-1664,封3.
[17] 岳英,董锦华,肖月梅.肺免疫微环境中调节因子表达对肿瘤生长和转移的影响[J].陕西医学杂志,2021,50(4):495-498.
[18] 阚书慧,张丹.温阳益髓方联合直接灸四花穴对非小细胞肺癌化疗所致骨髓抑制患者免疫功能及肿瘤相关抗原的影响[J].陕西中医,2024,45(2):200-203.
[19] 刘冬宇,白劼,白红艳.肝细胞癌组织中Foxp 3+调节性T淋巴细胞表达水平及其与肿瘤免疫相关性研究[J].陕西医学杂志,2021,50(8):1019-1022.
[20] YUKI K,CHENG N,NAKANO M,et al.Organoid models of tumor immunology[J].Trends Immunol,2020,41(8):652-664.
[21] ANDO Y,SIEGLER E L,TA H P,et al.Evaluating CAR-T cell therapy in a hypoxic 3D tumor model[J].Advanced Healthcare Materials,2019,8(5):e1900001.
[22] PAVESI A,TAN A T,KOH S,et al.A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors[J].JCI Insight,2017,2(12):e89762.
[23] AYUSO J M,TRUTTSCHEL R,GONG M M,et al.Evaluating natural killer cell cytotoxicity against solid tumors using a microfluidic model[J].Oncoimmunology,2019,8(3):1553477.
[24] DING S,HSU C,WANG Z,et al.Patient-derived micro-organospheres enable clinical precision oncology[J].Cell Stem Cell,2022,29(6):905-917.e6.
[25] WONG K U,SHI J,LI P,et al.Assessment of chimeric antigen receptor T cytotoxicity by droplet microfluidics in vitro[J].Antib Ther,2022,5(2):85-99.
[26] PATERSON K,PATERSON S,MULHOLLAND T,et al.Assessment of CAR-T cell-mediated cytotoxicity in 3D microfluidic cancer co-culture models for combination therapy[J].IEEE Open J Eng Med Biol,2022,3:86-95.
[27] LEE S W L,ADRIANI G,CECCARELLO E,et al.Characterizing the role of monocytes in T cell cancer immunotherapy using a 3D microfluidic model[J].Front Immunol,2018,9:416.
[28] KIRU L,ZLITNI A,TOUSLEY A M,et al.In vivo imaging of nanoparticle-labeled CAR T cells[J].Proc Natl Acad Sci U S A,2022,119(6):e2102363119.
[29] NEJADNIK H,JUNG K O,THERUVATH A J,et al.Instant labeling of therapeutic cells for multimodality imaging[J].Theranostics,2020,10(13):6024-6034.
[30] GOMEZ-PASTORA J,WEIGAND M,KIM J,et al.Potential of cell tracking velocimetry as an economical and portable hematology analyzer[J].Sci Rep,2022,12(1):1692.
[31] CUI X,MA C,VASUDEVARAJA V,et al.Dissecting the immunosuppressive tumor microenvironments in glioblastoma-on-a-chip for optimized PD-1 immunotherapy[J].Elife,2020,9:e52253.

更新日期/Last Update: 2024-05-06