[1]韩稳琦,王 毅,陈海潮,等.持续高糖状态对Kv11.1离子通道蛋白表达的影响[J].陕西医学杂志,2024,(1):32-36.[doi:DOI:10.3969/j.issn.1000-7377.2024.01.007]
 HAN Wenqi,WANG Yi,CHEN Haichao,et al.Effect of continuous high glucose on the expression of Kv11.1 ion channel protein[J].,2024,(1):32-36.[doi:DOI:10.3969/j.issn.1000-7377.2024.01.007]
点击复制

持续高糖状态对Kv11.1离子通道蛋白表达的影响
分享到:

《陕西医学杂志》[ISSN:1000-7377/CN:61-1281/TN]

卷:
期数:
2024年1期
页码:
32-36
栏目:
基础研究
出版日期:
2024-01-31

文章信息/Info

Title:
Effect of continuous high glucose on the expression of Kv11.1 ion channel protein
作者:
韩稳琦王 毅陈海潮尤红俊邓纪钊祁 杰
(陕西省人民医院心血管内二科,陕西 西安 710068)
Author(s):
HAN WenqiWANG YiCHEN HaichaoYOU HongjunDENG JizhaoQI Jie
(Second Department of Cardiovascular Medicine,Shaanxi Provincial People's Hospital,Xi'an 710068,China)
关键词:
HERG基因 真核表达载体 高糖干预 Kv11.1 蛋白表达
Keywords:
HERG gene Eukaryotic expression vector High sugar intervention Kv11.1 Protein expression
分类号:
R 587.1
DOI:
DOI:10.3969/j.issn.1000-7377.2024.01.007
文献标志码:
A
摘要:
目的:探讨持续高浓度葡萄糖干预对Kv11.1离子通道蛋白表达的影响。方法:①采用双酶切法和基因重建技术将HERG基因插入到表达绿色荧光蛋白的真核表达载体pEGFP-N1中,构建Kv11.1离子通道蛋白的表达载体pEGFP-N1-HERG并测序验证。②pEGFP-N1-HERG表达载体鉴定成功后经脂质体转染HEK293T细胞,并通过不同糖浓度(5、17.5、30 mmol/L)干预细胞48 h后流式细胞仪检测细胞HERG离子通道蛋白绿色荧光平均表达量。结果:流式细胞仪检测pEGFP-N1-HERG融合蛋白平均荧光强度于不同浓度葡萄糖持续干预后分别为218.87(5 mmol/L)、174.83(17.5 mmol/L)、142.90(30 mmol/L),三组间比较差异有统计学意义(均P<0.05)。结论:持续高糖状态抑制Kv11.1离子通道蛋白的表达,为糖尿病患者长期高糖状态时QT间期延长提供理论依据并奠定实验基础。
Abstract:
Objective: To investigate the effect of continuous high concentration glucose intervention on the expression of Kv11.1 ion channel protein.Methods:①The HERG gene was inserted into the eukaryotic expression vector pEGFP-N1 expressing green fluorescent protein by double enzyme digestion method and gene reconstruction technology to construct the expression vector pEGFP-N1-HERG of Kv11.1 ion channel protein and sequence it for verification.②After the identification of pEGFP-N1-HERG expression vector was successful,HEK293T cells were transfected with liposomes,and the average expression of HERG ion channel protein green fluorescence was detected by flow cytometry after 48 hours of intervention with different glucose concentrations(5,17.5,30 mmol/L).Results:The average fluorescence intensity of pEGFP-N1-HERG fusion protein detected by flow cytometry was 218.87(5 mmol/L),174.83(17.5 mmol/L),142.90(30 mmol/L)respectively after continuous intervention with different concentrations of glucose.There was significant difference among the three groups(P<0.05).Conclusion:Sustained hyperglycemia inhibits the expression of Kv11.1 ion channel protein,which provides theoretical basis and experimental basis for QT interval extension in diabetes patients with long-term hyperglycemia.

参考文献/References:

[1] SCHWARTZ P J,GNECCHI M,DAGRADI F,et al.From patient-specific induced pluripotent stem cells to clinical translation in long QT syndrome Type 2[J].Eur Heart,2019,40(23):1832-1836.
[2] WARMKE J W,GANETZKY B A.Family of potassium channel genes related to eag in Drosophila and mammals[J].Proc Natl Acad,1994(91):3438-3442.
[3] CURRAN M E.A molecular basis for cardiac arrhythmia:HERG mutations cause long QT syndrome[J].Cell,1995(80):795-803.
[4] HAVERKAMP W.The potential for QT prolongation and proarrhythmia by nonantiarrhythmic drugs:Clinical and regulatory implications.Report on a policy conference of the European Society of Cardiology[J].Eur Heart J,2000(21):1216-1231.
[5] DOYLE D A.The structure of the potassium channel:Molecular basis of K+ conduction and selectivity[J].Science,1998(280):69-77.
[6] ANDERSON C L,KUZMICKI C E,Childs R R,et al.Large-scale mutational analysis of Kv11.1 reveals molecular insights into type 2 long QT syndrome[J].Nat Commun,2014(5):5535.
[7] MITCHELL J L,CUNEO B F,ETHERIDGE S P,et al.Fetal heart rate predictors of long QT syndrome[J].Circulation,2012(126):2688-2695.
[8] BREWER K R,KUENZE G,VANOYE C G,et al.Structures illuminate cardiac ion channel functions in health and in long QT syndrome[J].Front Pharmacol,2020(11):550.
[9] XU Z,PATEL K P,LOU M F,et al.Up-regulation of K+ channels in diabetic rat ventricular myocytes by insulin and glutathione[J].Cardiovasc Res,2002(53):80-88.
[10] MARIONNEAU C,AIMOND F,BRUNET S,et al.PPARalpha-mediated remodeling of repolarizing voltage-gated K+(Kv)channels in a mouse model of metabolic cardiomyopathy[J].Mol Cell Cardiol,2008(44):1002-1015.
[11] SANGUINETTI M C,JIANG C,CURRAN M E,et al.A mechanistic link between an inherited and an acquired cardiac arrhythmia:HERG encodes the IKr potassium channel[J].Cell,1995(81):299-307.
[12] LONDON B,TRUDEAU M C,NEWTON K P,et al.Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current[J].Circ Res,1997(81):870-878.
[13] HORIGOME H,IWASHITA H,YOSHINAGA M,et al.Magnetocardiographic demonstration of torsade de pointes in a fetus with congenital long QT syndrome[J].Cardiovasc Electrophysiol,2008,19:334-335.
[14] SCHWARTZ P J,WOOSLEY R L.Predicting the unpredictable:Drug-induced QT prolongation and torsades de pointes[J].J Am Coll Cardiol,2016,67(13):1639-1650.
[15] SAKHAROVA N Y,MEZHEVIKINA L M,SMIRNOV A A,et al.Analysis of the effects of blue light on morphofunctional status of in vitro cultured blastocysts from mice carrying gene of enhanced green fluorescent protein(EGFP)[J].Bull Exp Biol Med,2014,157(1):162-166.
[16] CHALFIE M,TU Y,EUSKIRCHEN G,et al.Green fluorescent protein as a marker for gene expression[J].Science,1994(263):802-805
[17] KANDEL E S,CHANG B D,SCHOTT B,et al.Applications of green fluorescent protein as a marker of retroviral vectors[J].Somat Cell Mol Genet,1997(23):325-340.
[18] PLUYMERS W,CHEREPANOV P,SCHOLS D,et al.Nuclear localization of human immunodeficiency virus type 1 integrase expressed as a fusion protein with green fluorescent protein[J].Virology,1999(258):327-332.
[19] STEFFENS S,FRANK S,FISCHER U,et al.Enhanced green fluorescent protein fusion proteins of herpes simplex virus type 1 thymidine kinase and cytochrome P4504B1:Applications for prodrug-activating gene therapy[J].Cancer Gene Ther,2000(7):806-812.
[20] HOFFMAN R M.Imaging metastatic cell trafficking at the cellular level in vivo with fluorescent proteins[J].Methods Mol Biol,2014(1070):171-179.
[21] VANDENBERG J I,PEROZO E,ALLEN T W.Towards a structural view of drug binding to hERG K+ channels[J].Trends Pharmacol Sci,2017,38(10):899-907.
[22] LOPEZ-MEDINA A I,CHAHAL C A A,LUZUM J A.The genetics of drug-induced QT prolongation:Evaluating the evidence for pharmacodynamic variants[J].Pharmacogenomics,2022,23(9):543-557.
[23] HE F Z,MCLEOD H L,ZHANG W.Current pharmacogenomic studies on hERG potassium channels[J].Trends Mol Med,2013(19):227-238.
[24] SHI Y Q,YAN M,LIU L R,et al.High glucose represses hERG K+ channel expression through trafficking inhibition[J].Cell Physiol Biochem,2015,37(1):284-296.
[25] AIKAWA R,NAWANO M,GU Y,et al.Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 kinase/AKT[J].Circulation,2000,102(23):2873-2879.

相似文献/References:

[1]燕 婧,冯 芸,李 丹,等.microRNA-185-5p真核表达载体构建及其对胰腺癌Panc-1细胞增殖的影响[J].陕西医学杂志,2021,50(11):1323.[doi:DOI:10.3969/j.issn.1000-7377.2021.11.001]
 YAN Jing,FENG Yun,LI Dan,et al.Construction of microRNA-185-5p overexpression vector and its effect on the proliferation of pancreatic cancer cell Panc-1[J].,2021,50(1):1323.[doi:DOI:10.3969/j.issn.1000-7377.2021.11.001]

备注/Memo

备注/Memo:
基金项目:陕西省科学技术研究发展计划资助项目(2022SF-152); 陕西省人民医院科技人才支持计划项目(2022JY-69); 陕西省人民医院科技发展孵化基金资助项目(2022YJY-53)
更新日期/Last Update: 2024-01-05