[1]王 欢,董 川,李 彬,等.缺氧及缺氧再复氧对正常骨组织发生与发展的影响[J].陕西医学杂志,2021,50(6):664-668.[doi:DOI:10.3969/j.issn.1000-7377.2021.06.006]
 WANG Huan,DONG Chuan,LI Bin,et al.Effects of hypoxia and hypoxia reoxygenation on the development of normal bone tissue[J].,2021,50(6):664-668.[doi:DOI:10.3969/j.issn.1000-7377.2021.06.006]
点击复制

缺氧及缺氧再复氧对正常骨组织发生与发展的影响
分享到:

《陕西医学杂志》[ISSN:1000-7377/CN:61-1281/TN]

卷:
50
期数:
2021年6期
页码:
664-668
栏目:
基础研究
出版日期:
2021-06-05

文章信息/Info

Title:
Effects of hypoxia and hypoxia reoxygenation on the development of normal bone tissue
作者:
王 欢1董 川1李 彬1王 伟2王 璞1马 琼1文艳华1刘云燕1马保安1
(1.空军军医大学唐都医院骨科,陕西 西安 710038; 2.解放军联勤保障部队第941医院,青海 西宁 810007)
Author(s):
WANG HuanDONG ChuanLI BinWANG WeiWANG PuMA QiongWEN YanhuaLIU YunyanMA Baoan
(Department of Orthopedics,Tangdu Hospital of Air Force Medical University,Xi'an 710038,China)
关键词:
缺氧 再复氧 骨组织 三维重建 生物力学 骨质疏松
Keywords:
Hypoxia Hypoxia reoxygenation Bone tissue Three-dimensional reconstruction Biomechanics Osteoporosis
分类号:
Q 954.658
DOI:
DOI:10.3969/j.issn.1000-7377.2021.06.006
文献标志码:
A
摘要:
目的:观察缺氧及缺氧再复氧对小鼠正常骨组织发生与发展的影响。方法:将健康的雄性C57小鼠40只随机分为常氧组、低氧组及低氧转常氧组。常氧组和低氧组分别饲养于常氧和低氧环境8周,而低氧转常氧组于低氧环境饲养4周后转至常氧环境饲养4周。于4周和8周处死小鼠,采用micro-CT、三点弯曲试验及HE染色观察小鼠股骨微观结构及功能变化。结果:4周时,低氧组骨体积分数(BV/TV)、骨小梁厚度(Tb.Th)、骨小梁数量(Tb.N)均低于常氧组(均P<0.05),骨表面积和组织体积比(BS/TV)高于常氧组(P<0.05); 三维重建及HE染色观察低氧组骨小梁出现变短、断裂、网状结构退化,空隙较大,而常氧组骨小梁较粗,空隙较小,数量较多,连续性较好; 生物力学检测显示低氧组小鼠股骨最大力、刚度、最大应力及杨氏模量均低于常氧组(均P<0.05)。8周时,低氧组BV/TV、Tb.Th、Tb.N均低于常氧组和低氧转常氧组,BS/TV高于常氧组与低氧转常氧组(均P<0.05),而常氧组与低氧转常氧组比较均无统计学差异(均P>0.05); 三维重建及HE染色显示,低氧组骨小梁断裂、退化明显,空隙明显,而低氧转常氧组骨小梁的空隙小且均匀,连续性较好; 生物力学检测显示低氧转常氧组小鼠股骨最大力、刚度、最大应力及杨氏模量与常氧组比较均无统计学差异(均P>0.05),但均高于低氧组(均P<0.05)。结论:低氧环境会造成骨质流失。在此情况下,复氧对于恢复骨组织结构和功能有积极作用,提示复氧可改善缺氧对骨组织结构和功能的影响。
Abstract:
Objective:To observe the effects of hypoxia and hypoxia reoxygenation on the development of normal bone tissue in mice.Methods:40 healthy male C57 mice were randomly divided into normoxia group,hypoxia group,and hypoxia-to-normoxia group.The normoxia group and hypoxia group were fed in normoxic and hypoxic environment for 8 weeks,respectively,while the hypoxia-to-normoxia group was fed in hypoxic environment for 4 weeks and then turned to normoxic environment for 4 weeks.The mice were sacrificed at 4 and 8 weeks to observe the changes of femur microstructure and function by micro-CT,three-point bending test and HE staining.Results:At 4 weeks,BV/TV,Tb.Th and Tb.N in the hypoxia group were lower than those in the normoxia group(all P<0.05); BS/TV was higher than that of the normoxia group(P<0.05); three-dimensional reconstruction and HE staining observed that the trabecula of the hypoxia group was shortened,fractured,and the mesh structure was degenerated,and the gap was larger,while the trabecula of the normoxia group was thicker,with smaller voids,more number,and better continuity; biomechanical testing showed that the maximum force,stiffness,maximum stress and Young's modulus of the femur of the hypoxia group were lower than those of the normoxia group(All P<0.05).At 8 weeks,the BV/TV,Tb.Th,Tb.N of the hypoxia group were lower than those of the normoxia group and the hypoxia-to-normoxia group,and BS/TV was higher than the normoxia group and the hypoxia-to-normoxia group(all P<0.05),while there was no statistical difference between the normoxia group and the hypoxia-to-normoxia group(all P>0.05); three-dimensional reconstruction and HE staining showed that the hypoxia group had obvious fracture and degeneration of bone trabeculae,obvious voids,while the of the hypoxia-to-normoxia group had small and uniform trabecular bone gap and good continuity; biomechanical testing showed that the maximum force,stiffness,maximum stress and Young's modulus of the femur in the hypoxia-to-normoxia group were not statistically different from those of the normoxia group(all P>0.05),but they were all higher than the hypoxia group(All P<0.05).Conclusion:Hypoxic environment can cause bone loss.In this case,reoxygenation has a positive effect on the restoration of bone tissue structure and function,suggesting that reoxygenation can improve the effect of hypoxia on bone tissue structure and function.reoxygenation has a positive effect on the recovery of bone structure and function when hypoxic

参考文献/References:

[1] 张亚萍,杨历新,宁梅桂,等.高海拔低氧对居民血清胆红素及相关指标的影响[J].陕西医学杂志,2003,32(8):705-707.
[2] Boos CJ,Bye K,Sevier L,et al.High altitude affects nocturnal non-linear heart rate variability:PATCH-HA study[J].Front Physiol,2018,9:390.
[3] Voutselas S,Stavrou V,Zouridis S,et al.The effect of sleep quality in Sherpani Col High Camp Everest[J].Respir Physiol Neurobiol,2019,269:103261.
[4] Ma H,Zhang D,Li X,et al.Long-term exposure to high altitude attenuates verbal and spatial working memory:Evidence from an event-related potential study[J].Brain Behav,2019,9(4):e01256.
[5] Bian SZ,Zhang L,Jin J,et al.The onset of sleep disturbances and their associations with anxiety after acute high-altitude exposure at 3700 m[J].Transl Psychiatry,2019,9(1):175.
[6] Zhang D,Ma H,Huang J,et al.Exploring the impact of chronic high-altitude exposure on visual spatial attention using the ERP approach[J].Brain Behav,2018,8(5):e00944.
[7] 郑华东,岳 斌,杜 洁,等.老年男性慢性阻塞性肺病对骨质疏松影响的研究[J].陕西医学杂志,2017,46(11):1539-1541.
[8] 董 琪,张快强,昝 强,等.刘德玉教授论治原发性骨质疏松症经验[J].陕西中医,2020,41(2):226-229.
[9] Yumol JL,Wakefield CB,Sacco SM,et al.Bone development in growing female mice fed calcium and vitamin D at lower levels than is present in the AIN-93G reference diet[J].Bone Rep,2018,8:229-238.
[10] Wakefield CB,Yumol JL,Sacco SM,et al.Bone structure is largely unchanged in growing male CD-1 mice fed lower levels of vitamin D and calcium than in the AIN-93G diet[J].Bone Rep,2019,10:100191.
[11] 耿 沁,朱淼鑫,孙 磊,等.micro-CT法观测雌性小鼠股骨骨参数的分析[J].实验动物与比较医学,2014,34(1):46-49.
[12] Zhuang Y,Yan Y,Yang X,et al.Osteoporosis in a rat model co-exposed to cigarette smoke and intermittent hypoxia[J].Int J Chron Obstruct Pulmon Dis,2020,15:2817-2825.
[13] 王 伟.低压低氧环境对正常骨及骨修复的影响及其转录组学分析[D].西安:空军军医大学,2017.
[14] Yang Y,Fan X,Tao J,et al.Impact of prenatal hypoxia on fetal bone growth and osteoporosis in ovariectomized offspring rats[J].Reprod Toxicol,2018,78:1-8.
[15] 程朋真,宁芬茹,李 丹,等.不同保存方式对小鼠股骨力学性能的影响[J].生物医学工程学杂志,2016,33(6):1133-1138.
[16] Fonseca H,Moreira-Goncalves D,Esteves JL,et al.Voluntary exercise has long-term in vivo protective effects on osteocyte viability and bone strength following ovariectomy[J].Calcif Tissue Int,2011,88(6):443-454.
[17] 黄志荣,朱丽斌,吴海游,等.辅酶Q10对10月龄小鼠股骨的Micro CT观察及骨生物力学检测[J].中国骨质疏松杂志,2016,22(3):366-371.
[18] Sharma R,Cramer NP,Perry B,et al.Chronic exposure to high altitude:Synaptic,astroglial and memory changes[J].Sci Rep,2019,9(1):16406.
[19] Guo WY,Bian SZ,Zhang JH,et al.Physiological and psychological factors associated with onset of high-altitude headache in Chinese men upon acute high-altitude exposure at 3700 m[J].Cephalalgia,2017,37(4):336-347.
[20] Song J,Sundar K,Gangaraju R,et al.Regulation of erythropoiesis after normoxic return from chronic sustained and intermittent hypoxia[J].J Appl Physiol,2017,123(6):1671-1675.
[21] Song K,Zhang Y,Ga Q,et al.High-altitude chronic hypoxia ameliorates obesity-induced non-alcoholic fatty liver disease in mice by regulating mitochondrial and AMPK signaling[J].Life Sci,2020,252:117633.
[22] Määttä J,Sissala N,Dimova EY,et al.Hypoxia causes reductions in birth weight by altering maternal glucose and lipid metabolism[J].Sci Rep,2018,8(1):13583.
[23] Wang T,Zhang X,Bikle DD.Osteogenic differentiation of periosteal cells during fracture healing[J].J Cell Physiol,2017,232(5):913-921.
[24] Hirai K,Furusho H,Hirota K,et al.Activation of hypoxia-inducible factor 1 attenuates periapical inflammation and bone loss[J].Int J Oral Sci,2018,10(2):92-101.
[25] Wagegg M,Gaber T,Lohanatha FL,et al.Hypoxia promotes osteogenesis but suppresses adipogenesis of human mesenchymal stromal cells in a hypoxia-inducible factor-1 dependent manner[J].PLoS One,2012,7(9):e46483.
[26] Lin S,Zhu B,Huang G,et al.Microvesicles derived from human bone marrow mesenchymal stem cells promote U2OS cell growth under hypoxia:The role of PI3K/AKT and HIF-1α[J].Hum Cell,2019,32(1):64-74.
[27] Ma Z,Yu R,Zhao J,et al.Constant hypoxia inhibits osteoclast differentiation and bone resorption by regulating phosphorylation of JNK and IκBα[J].Inflamm Res,2019,68(2):157-166.

相似文献/References:

[1]王军,曹艳,常江,等.红景天苷对急性缺氧性神经细胞损伤保护作用及机制探讨[J].陕西医学杂志,2017,(06):706.

更新日期/Last Update: 2021-06-07