[1]张海平,郝定均,孙宏慧,等.可变向腰椎融合器在腰椎融合术中位置变化的生物力学研究*[J].陕西医学杂志,2020,49(9):1062-1066.[doi:DOI:10.3969/j.issn.1000-7377.2020.09.002]
 ZHANG Haiping,HAO Dingjun,SUN Honghui,et al.Biomechanical study on the position of the direction-changeable lumbar Cage in lumbar spinal fusion[J].,2020,49(9):1062-1066.[doi:DOI:10.3969/j.issn.1000-7377.2020.09.002]
点击复制

可变向腰椎融合器在腰椎融合术中位置变化的生物力学研究*
分享到:

《陕西医学杂志》[ISSN:1000-7377/CN:61-1281/TN]

卷:
49
期数:
2020年9期
页码:
1062-1066
栏目:
基础研究
出版日期:
2020-09-01

文章信息/Info

Title:
Biomechanical study on the position of the direction-changeable lumbar Cage in lumbar spinal fusion
作者:
张海平郝定均孙宏慧朱 名王 彪郑永宏杨 明姜永宏白小帆
西安交通大学附属红会医院脊柱外科(西安 710054)
Author(s):
ZHANG HaipingHAO DingjunSUN Honghuiet al.
Department of Spinal Surgery,Honghui Hospital Affiliated to Xi'an Jiaotong University(Xi'an 710054)
关键词:
可变向腰椎融合器 生物力学特性 有限元分析 经椎间孔椎间融合术 应力 腰椎
Keywords:
Direction-changeable lumbar Cage Biomechanical properties Finite element analysis Transforaminal lumbar interbody fusion Stress Lumbar spine
分类号:
R318.01
DOI:
DOI:10.3969/j.issn.1000-7377.2020.09.002
文献标志码:
A
摘要:
目的:应用有限元分析法探讨可变向腰椎融合器(Cage)在经椎间孔腰椎间融合术(TLIF)中旋转至不同位置时应力分布的力学特性。方法:首先建立人体L3-5节段三维有限元模型,在L4-5节段模拟TLIF术式植入可变向腰椎Cage,将Cage旋入不同位置建立不同模型:模型A(将Cage前端刚触及椎体矢状位中线)、模型B(Cage前端的1/3到达矢状位中线)、模型C(Cage整体被矢状位中线平分)和模型D(Cage的2/3超过矢状位中线),比较分析4种Cage模型随着位置变化在前屈、后伸、左弯、右弯、左旋、右旋生理活动下可变向腰椎Cage应力分布的生物力学差异。结果:在相同术式及载荷条件下,4种模型在6种生理活动下进行比较,可变向腰椎Cage在模型C中应力分布最小,分别为20.941 MPa(前屈)、19.308 MPa(后伸)、20.245 MPa(左弯)、18.284 MPa(右弯)、23.473 MPa(左旋)、22.944 MPa(右旋); 从模型A到模型C,腰椎Cage应力分布逐渐减小,而模型D时应力分布出现增大趋势。结论:可变向腰椎Cage应力分布随着植入位置不同而存在差异。当可变向腰椎Cage完全位于前中部时,Cage应力分布较为均匀且较小。
Abstract:
Objective:To investigate the mechanical characteristics of the stress distribution on the direction-changeable lumbar Cage rotating to different positions in the transforaminal lumbar interbody fusion(TLIF)by finite element(FE)analysis.Methods:The three-dimensional finite element model of human L3-5 segment was first developed.And the model was adjusted to adapt different direction-changeable Cage positions at the L4-5 level though TLIF with pedicle screws.Cage was rotated into different positions to establish four different models:Model A(the Cage front just reached the vertebral sagittal midline),model B(1/3 of the Cage reached the sagittal midline),model C(the Cage equally divided by the sagittal midline),and model D(2/3 of the Cage exceeded the sagittal midline).The stress distribution of Cages were analyzed under flexion,extension,left lateral bending,right lateral bending,left rotation and right rotation.Results:Under flexion,extension,left lateral bending,right lateral bending,left rotation and left rotation,the stress in the model C was minimum,which were respectively 20.9 MPa,19.3 MPa,20.2 MPa,18.2 MPa,23.4 MPa,22.9 MPa comparing with other models.From model A to model C,the stress of lumbar Cage was decreased gradually,while that of model D was increased.Conclusion:The position of the direction-changeable Cage could noticeably affect the stress.Comparing the Cages with different positions,we found that the anteriocentral position Cage showed advantages in lower Cage stress,which indicates the optimal position of Cage and has great significance to improve the clinical outcomes.

参考文献/References:

[1] Patel DV,Yoo JS,Karmarkar SS,et al.Interbody options in lumbar fusion[J].J Spine Surg,2019,5(s1):19-24.
[2] Faizan A,Kiapour A,Kiapour AM,et al.Biomechanical analysis of various footprints of transforaminal lumbar interbody fusion devices[J].Journal of Spinal Disorders and Techniques,2014,27(4):e118-127.
[3] Zhang Z,Fogel GR,Liao Z,et al.Biomechanical analysis of lumbar interbody fusion Cages with various lordotic angles:a finite element study[J].Comput Methods Biomech Biomed Engin,2018,21(3):247-254.
[4] Mingjie Y,Guixin S,Song G,et al.The biomechanical study of extraforaminal lumbar interbody fusion:a three-dimensional finite-element analysis[J].Journal of Healthcare Engineering,2017,2017:9365068.
[5] Bagby GW.Arthrodesis by the distraction-compression method using a stainless steel implant[J].Orthopedics,1988,11(6):931-934.
[6] 赵 杰,王新伟,侯铁胜,等.斜向单枚BAK植入后路腰椎椎体间融合术的生物力学及临床研究[J].中国脊柱脊髓杂志,2000,10(4):208-211.
[7] Rahman M,Summers L,Richter B,et al.Comparison of techniques for decompressive lumbar laminectomy:the minimally invasive versus the "classic" open approach[J].Minim Invasive Neurosurg,2008,51(2):100-105.
[8] 张 凯,张 锋,赵长清,等.腰椎椎间融合术后融合器后移的原因分析及再手术策略[J].中华骨科杂志,2016,36(17):1093-1098.
[9] 王晓峰,欧云生,蒋电明,等.肾型n-HA/PA66腰椎间融合器在经椎间孔腰椎椎体间融合术中的有限元分析[J].中国临床解剖学杂志,2014,32(1):67-71.
[10] Zhao FD,Yang W,Shan Z,et al.Cage migration after transforaminal lumbar interbody fusion and factors related to it[J].Orthop Surg,2012,4(4):227-232.
[11] 赵军然.腰椎后路椎间植骨融合术后Cage后移的相关因素分析[J].颈腰痛杂志,2017,38(2):106-110.
[12] Zhang JF,Zhou ZJ,Zhao FD,et al.An important factor for Cage retropulsion after lumbar interbody fusion—the injury of the posterior part of endplate cranial-adjacent to fusion[J].Chin J Orthop,2016,36(14):914-920.
[13] Grant JP,Oxland TR,Dvorak MF.Mapping the structural properties of the lumbosacral vertebral endplates[J].Spine,2001,26(8):889-896.
[14] 黄诚谦,韦 文,陆文忠,等.经椎间孔入路腰椎椎间融合术中融合器位置对融合器沉降的影响[J].脊柱外科杂志,2019,17(3):177-182.
[15] Fukuta S,Miyamoto K,Hosoe H,et al.Kidney-type intervertebral spacers should be located anteriorly in cantilever transforaminal lumbar interbody fusion:analyses of risk factors for spacer subsidence for a minimum of 2 years [J].J Spinal Disord Tech,2011,24(3):189-195.

备注/Memo

备注/Memo:
*国家自然科学基金资助项目(81830077);陕西省重点研发计划项目(2018SF-046)
更新日期/Last Update: 2020-09-02